Mediation with random slopes for the 1-1-1-1 case has the indirect effect that I show below. I don't know a reference for this but it can be derived from basic statistical principles assuming normal errors for the random slopes. With random slope means b1, b2, b3 corresponding to the regressions of $y$ on $\mathrm{m} 1, \mathrm{~m} 1$ on m 2 , and m 2 on x , respectively, and their corresponding errors $\mathrm{e} 1, \mathrm{e} 2, \mathrm{e} 3$, the indirect effect boils down to the expectation
$E[(b 1+e 1)(b 2+e 2)(b 3+e 3)]=$
$=b 1 * b 2 * b 3+b 1 * E[e 2 e 3]+b 2 * E[e 1 e 3]+b 3 * E[e 1 e 2]$
because $E[e]=0$ and $E[e 1 e 2 e 3]=0$ for normal variables. An expressions such as $E[e 2 e 3]$ is the same as Cov(e2e3), the covariance of the corresponding two random slopes.

If the regression of m 2 on x is moderated by w and the $\mathrm{x}^{*} \mathrm{w}$ interaction also has a random slope (with mean b4 and error e4), the indirect effect is
b1*b2*(b3+b4*W)+ the above 3 terms involving the covariances + b4*W* $\operatorname{Cov}(e 1 e 2)+W^{*} \operatorname{Cov}(e 1 e 4)+W^{*} \operatorname{Cov}(e 2 e 4)$,
where $W$ is a value on the moderator $w$.

I hope I got all that right.

